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Collectively, these data indicate that the rise in brain tryptophan catabolism and
depressive-like behavior induced by innate immune system activation is impaired in db/
db mice. These findings could have relevance in improving the management and treatment of
inflammation-related complications in MetS.
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1. Introduction

Over the last decades, clinical (Evans et al., 2005; Raison
et al., 2010; Capuron and Miller, 2011) and experimental
(Castanon et al., 2002; Frenois et al., 2007; Moreau et al.,
2008) research focusing on the intricate relationship
between the innate immune system and the brain have
supported a main role for dysregulated production and/or
brain action of cytokines in mood disorders (Dantzer et al.,
2008; Zunszain et al., 2012). This is particularly relevant to
people with severe obesity or metabolic syndrome (MetS)
who display a high incidence of mood symptoms concomitant
with low-grade inflammation (Dandona et al., 2005; Capuron
et al., 2008; Viscogliosi et al., 2013).

Interestingly, development of mood symptoms in patients
with inflammatory conditions is often associated with reduced
circulating tryptophan levels and concomitant increased serum
or cerebrospinal fluid concentrations of one of its main meta-
bolite, kynurenine (Glaser and Kiecolt-Glaser, 2005; Myint
et al., 2007; Raison et al., 2010; Capuron and Miller, 2011).
These clinical findings suggested a possible link between
inflammation-related mood disorders and cytokine-induced
activation of the indoleamine 2,3-dioxygenase (IDO) that is
the first and rate-limiting enzyme that catabolizes tryptophan
along the kynurenine pathway in activated monocytes, macro-
phages and brain microglia (Moroni et al., 1991; Takikawa
et al., 1984). Sustained brain IDO activation resulting from
chronic cytokine production may be deleterious because of its
negative impact on monoaminergic neurotransmission (by
changing serotonin synthesis and catabolism) and on neuronal
survival (by increasing production of several kynurenine deri-
vatives with neuroactive properties) (Corona et al., 2013;
Dantzer et al., 2011; Guillemin, 2012; Liu et al., 2013; Stone
et al., 2013). Actually, increased production of kynurenine
derivatives has been related to the stretch of both hippocam-
pus damages and mood disorders in humans (Schiepers et al.,
2005; Maletic et al., 2007), and with depressive-like behavior in
rodents (Walker et al., 2013). Experimentally, we demon-
strated in mice challenged with a cytokine inducer such as
lipopolysaccharide (LPS) that cytokine-induced brain IDO acti-
vation, particularly in the hippocampus, parallels development
of depressive-like behaviors (Frenois et al., 2007; André et al.,
2008; Moreau et al., 2008). This association between brain IDO
activity and depressive-like behavior was also demonstrated in
aged mice (Godbout et al., 2008; Kelley et al., 2013) and in
mice deficient for the microglial fractalkine receptor (CX3CR1)
(Corona et al., 2010), which normally allows neurons to control
microglial activation (Cardona et al., 2006). Both models dis-
play sustained hippocampal microglial activation and cytokine
production after a LPS challenge, together with protracted
brain IDO expression and depressive-like behavior (Godbout
et al., 2008; Wynne et al., 2010; Corona et al., 2013). Other
studies have confirmed the key role of hippocampal cytokine
activation in inducing brain IDO activity and depressive-like
behavior (André et al., 2008; Wang et al., 2009; Fu et al., 2010).
Interestingly, direct peripheral administration of kynurenine
dose-dependently increases depressive-like behavior in non
immune-stimulated mice (O’Connor et al., 2009c). Moreover,
pharmacological or genetic inhibition of brain IDO activation
prevents the induction of depressive-like behavior by systemic
immune challenges (Henry et al., 2009; O’Connor et al., 2009a,
2009b, 2009c). Taken together, these findings demonstrate the
causal role of brain IDO activation by cytokines in mediating
inflammation-related depressive-like behavior.

Although peripheral low-grade inflammation (Capuron
et al., 2008) and IDO activation (Brandacher et al., 2006,
2007; Oxenkrug, 2010) have been associated with a high
incidence of mood symptoms in patients with MetS, much less
is known about the potential involvement of brain cytokine and
IDO activation in that context. Interestingly, we recently
reported enhanced expression of inflammatory cytokines in
the hippocampus of db/db mice, which display several fea-
tures of MetS as a consequence of an inactivating mutation in
the leptin receptor, compared to their healthy counterparts
(db/+ mice) (Dinel et al., 2011). This increased hippocampal
inflammation is related to some particular mood symptoms:
db/db mice display in those basal conditions increased anxi-
ety-like behavior but similar depressive-like behavior than db/
+ mice (Dinel et al., 2011). Based on the strong association
between brain IDO activation and induction of depressive-like
behavior, these results may suggest an impairment of cytokine-
induced brain IDO activation in db/db mice. Testing this
assumption is particularly relevant in order to fully understand
the regulation of brain IDO activity in the context of the MetS
and its inflammation-related complications.

In the present study, we sought to approach this question
by measuring inflammatory and behavioral responses of db/
db mice to a systemic LPS challenge in experimental condi-
tions that allow LPS to induce IDO activation and depressive-
like behavior independently from sickness behavior (Frenois
et al., 2007; O’Connor et al., 2009c). Whereas some reports
focused on LPS-induced sickness behavior in db/db mice
(Faggioni et al., 1997; O’Connor et al., 2005; Lin et al.,
2007), no studies investigated in these mice LPS-induced
hippocampal cytokines expression, brain IDO activation
and depressive-like behavior. Here we show that db/db mice
displayed blunted brain IDO activation and depressive-like
behavior in response to LPS, despite enhanced induction of
hippocampal cytokine expression.

2. Materials and methods

2.1. Animals and treatment

All animal experiments were conducted according to the
relevant French (Directive 87/148, Ministère de l’Agriculture
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et de la Pêche) and international (Directive 2010/63, European
Community) legislation. They adhered to protocols approved
by the Animal Care and Use Committee from Bordeaux Uni-
versity (approval ID: 5012047-A). Every effort was made to
minimize suffering and the number of animal used. Male db/db
(C57BLKS/J-leprdb/leprdb; n = 32) and db/+ (C57BLKS/J-
leprdb/+; n = 32) mice between 10 and 12 weeks of age were
obtained from Charles River Laboratories (France). They were
housed individually under a normal 12-h light:dark cycle with
food and water available ad libitum. Mice were handled daily
for 1 week before the experiment onset to minimize stress
reactions to manipulation.

LPS was phenol-extracted from Escherichia coli (serotype
0127:B8; RBI/Sigma). On the test day, LPS was dissolved in
sterile endotoxin-free isotonic saline and administered intra-
peritoneally (i.p.). The dose of LPS (5 mg/mouse) was
selected on the basis of its ability to induce the full spectrum
of sickness in both db/db and db/+ mice (O’Connor et al.,
2005).

2.2. Experimental procedure

Fig. 1 shows the experimental design and timing of behavioral
experiments, body weight measures and tissue collection.
Peripheral LPS administration enhances peripheral and brain
production of proinflammatory cytokines, which are respon-
sible of physiological and behavioral symptoms of sickness
(Dantzer et al., 2008). These symptoms of sickness progres-
sively wane whereas the expression of depression-like beha-
viors continues (Frenois et al., 2007; Godbout et al., 2008;
O’Connor et al., 2009c). Consequently, only protracted
depressive-like behaviors remain 24 h after LPS treatment.
Therefore, we measured the behavioral and neurobiological
reactivity to LPS challenge at different relevant post-treat-
ment time-points. Mice were injected i.p. with sterile physio-
logical saline or LPS (5 mg/mouse) and were immediately
returned to their home cage. They were weighed just before
and 2, 6 and/or 25 h after this injection in order to use body
weight loss as a marker of sickness and as control for LPS
efficiency (André et al., 2008). Mice were euthanized by CO2

inhalation either 2 h or 25 h after LPS injection, within a few
seconds after being picked up from their home cage. Blood
samples were immediately collected via cardiac puncture into
EDTA (10%)-coated chilled tubes. After centrifugation (10 min,
3000 � g, 4 8C), aliquots of plasma were stored at �80 8C. Mice
were perfused with chilled PBS via the ascending aorta to
remove all traces of blood from tissues. Brains were rapidly
extracted from the skulls and either directly stored at �80 8C
until IDO activity assay (mice sacrificed 25 h post-LPS) or
Figure 1 Experimental timeline and design. db/db and db/+ mice
charide (LPS; 5 mg/mouse i.p.) and were then tested for body weight
(FST). Tissues were collected after sacrifice 2 h or 25 h after treatm
carefully dissected to immediately collect, dry frozen and
store the hippocampus for subsequent determination of mRNA
levels (mice sacrificed 2 h post-LPS). Lungs and liver were also
rapidly collected and directly stored at �80 8C.

2.3. Behavioral measurements

Experiments were performed in the morning under conditions
of dim light and low noise. Behavior was videotaped to be
scored later by a trained observer blind to drug treatments,
using ‘‘The Observer Basic’’ software (Noldus, Netherlands).
Mice were tested in the activity cage at 6 h and 23 h post-
treatment, and in the forced swim test (FST) at 24 h post-
treatment. All testing equipment was thoroughly cleaned
between each session.

2.3.1. Two-compartment cage
In order to determine the effect of LPS on motor activity,
mice were individually placed into a polypropylene cage
(30 cm � 11 cm � 12 cm) similar to the home cage but
divided into two communicating compartments that were
separated by a plexiglas wall containing a small opening
(2.5 cm � 3.0 cm). As previously described (Frenois et al.,
2007; Moreau et al., 2008), activity was evaluated by count-
ing the number of between-compartments crossings per-
formed during the 6-min test.

2.3.2. Forced swim test (FST)
This standardized test of depressive-like behavior was essen-
tially conducted as previously described (Frenois et al., 2007;
Moreau et al., 2008; Dinel et al., 2011). Briefly, each mouse
was placed individually in a cylinder (16 cm � 31 cm) con-
taining warm water (25 � 1 8C) to avoid temperature-related
stress response. Mice were tested during a 6-min period.
Immobility time was determined by the time a mouse
stopped struggling and moved only slowly to remain floating
in the water, keeping its head above water. Increased dura-
tion of immobility has been proposed to reflect a state of
helplessness that is reduced by antidepressants.

2.4. Biochemical measurements

2.4.1. Cytokines and corticosterone assay
Plasma cytokines (IL-1b, IL-6, TNF-a, INF-g and IL-10) were
measured with a Milliplex kit (Merk-Millipore, France) follow-
ing the manufacturer’s instructions. Total plasma corticos-
terone was measured with an in-house RIA using a highly
specific antibody provided by H. Vaudry (University of Rouen,
 (n = 8/group) were injected with sterile saline or lipopolysac-
 changes (BW), locomotor activity (LMA) and/or forced swim test
ent.
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France) as previously described (Richard et al., 2010). All
samples were run in duplicate.

2.4.2. Reverse transcription and real-time RT-PCR
Total RNA was extracted from the hippocampus using a
RNeasy Mini Kit (Qiagen) and reverse-transcribed as pre-
viously described (O’Connor et al., 2009c). Real-time RT-
PCR for IL-1b, IL-6, TNF-a, INF-g, IL10, TLR4, CD14, CD11b,
CX3CL1, CX3CR1 and BDNF was performed on an ABI Prism
7700 using Taqman gene expression assays for sequence-
specific primers purchased from Applied Biosytems (Foster
City, CA). Reactions were performed in duplicate according
to manufacturer instructions. Relative expression levels were
calculated according to the methods of Schmittgen and Livak
(2008) and plotted as fold change relative to the appropriate
control condition.

2.4.3. Concentrations of kynurenine (KYN) and
tryptophan (TRP)
KYN and TRP levels were determined as previously described
(Moreau et al., 2005). The KYN/TRP ratio allows to indirectly
assess IDO activity in lungs and brain and tryptophan-2,3
dioxygenase (TDO) activity in the liver. Briefly, tissues were
homogenized using ice cold potassium 0.14 M KCl, 20 mM
phosphate buffer pH 7.0 with an UltraTurrax T25 homogeni-
zer at 1000 rpm. Homogenates were then centrifuged at
14,000 � g for 30 min at 4 8C. 200 ml of supernatants were
precipitated in trichloroacetic acid (2 mM) and then centri-
fuged twice (15 and 5 min) at 1300 � g at 4 8C. Supernatants
were injected onto a 5-mm C18 HPLC column (Lichrospher,
Alltech, Deerfield, IL, USA) at a flow rate of 1.0 ml/min with
mobile phase containing 0.1 M ammonium acetate/acetic
acid buffer and 5% acetonitrile (pH 4.65). Levels of KYN were
evaluated by UV absorbency at 360 nm. Levels of TRP were
detected by fluorescent detector at 285 nm excitation and
365 nm emission wavelengths.

2.5. Statistical analysis

Experiments were conducted as a completely randomized
design. Results are presented as mean � SEM and were
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Figure 2 Effect of LPS on depressive-like behavior and brain trypt
measured over 6 min in the forced swim test (FST) 24 h after saline
determined by the time a mouse stopped struggling and moved only
water. (B) Kynurenine (KYN)/tryptophan (TRP) ratio measured in hom
FST, within a few seconds after the mice were picked up from their ho
HPLC and the KYN/TRP ratio was used to assess IDO activity. Dat
***p < 0.001, for saline vs. LPS. ###p < 0.001 for db/db vs. db/+ mic
analyzed using a two-way ANOVA with genotype (db/+ vs.
db/db) and treatment (saline vs. LPS) as between factors and
time as within factor. When appropriate, differences
between groups were determined using the Fisher’s least
significant difference post hoc multiple pairwise compari-
sons. Statistical significance was set at p < 0.05.

3. Results

3.1. LPS-induced depressive-like behavior and
increase of brain KYN/TRP ratio is impaired in db/
db mice

Duration of immobility measured in the FST was used as an
index of depressive-like behavior. This parameter was similar
in db/+ and db/db mice 24 h after saline treatment ( p > 0.1)
as previously reported in non-injected db/+ and db/db mice
(Dinel et al., 2011; Fig. 2A). We have previously shown that
LPS treatment increases the time spent immobile in the FST,
24 h after injection, independently of any motor impairment
(Frenois et al., 2007; Godbout et al., 2008; O’Connor et al.,
2009c). Here, LPS significantly increased duration of immo-
bility (F (1,22) = 5.4, p < 0.05) compared to saline-treated
mice in db/+ mice that were 65% more immobile than their
saline-treated controls ( p < 0.05), but not in db/db mice
( p > 0.1) (Fig. 2A). Both LPS-treated db/+ and db/db mice
displayed by that time similar locomotor activity levels
(similar number of crossings) than their respective saline-
treated counterparts (Supplementary Fig. S1). This result
showed that 24 h after treatment all mice have recovered
from the LPS-induced reduction of locomotor activity
observed 6 h after treatment (treatment: F (1,23) = 11.6,
p < 0.01; Supplementary Fig. S1). Moreover, they confirmed
that increased immobility in the FST was not just linked to
impaired motor activity since db/+ mice, which were more
immobile than db/db mice in the FST, were on the contrary
significantly more active in the two-compartment cages
(genotype: F (1,23) = 59.7, p < 0.001).

We then measured brain activation of IDO since it med-
iates LPS-induced increase of the duration of immobility in
B: Brain  TR P Metabolism
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the FST (Fu et al., 2010; Lawson et al., 2013). Brain KYN/TRP
ratio, used as an indirect evaluation of IDO activation, was
measured 1 h after completion of the FST as previously
described (O’Connor et al., 2009a, 2009b, 2009c). The
ANOVA analysis revealed a main effect of genotype
(F (1,23) = 18.7, p < 0.001) and treatment (F (1,23) = 84.6,
p < 0.0001), with a significant interaction between both
factors (F (1,23) = 16.5, p < 0.001; Fig. 2B). Basal brain
KYN/TRP ratio was similar in both genotypes. As anticipated,
LPS significantly increased this ratio in all treated mice, but
this increase was significantly blunted in db/db mice com-
pared to db/+ mice (LPS: db/+ vs. db/db: p < 0.001). Of
note, this was due to a significantly smaller increase of brain
KYN levels after LPS in db/db mice compared to db/+ mice
(treatment: F (1,21) = 16.1, p < 0.001; genotype � treat-
treatment: F (1,21) = 5.5, p < 0.05), whereas both saline-
treated groups displayed similar basal brain KYN levels
(Supplementary Table S1). Concurrently, no significant
between-genotype differences neither treatment effect
were found regarding brain TRP levels. Taken together these
results strongly suggest therefore that changes in brain KYN/
TRP ratio were likely linked to brain IDO activation, although
a potential modulation of this ratio by the KYN transported
from the periphery to the brain is still possible. Blunted LPS-
induced increase of brain KYN/TRP ratio in db/db mice may
therefore participate to their absence of LPS-induced
increase of depressive-like behavior. A question arose then
as to whether the efficiency of LPS treatment is globally
impaired in db/db mice.
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3.2. LPS-induced body weight loss and
peripheral inflammatory activation is similar in
both db/+ and db/db mice

In order to control the efficiency of the response to LPS, we
measured first body weight changes induced by LPS 2 h, or 6
and 25 h after its injection, compared to pre-treatment body
weight. As expected, db/db mice were heavier than db/+
mice whatever the treatment (genotype: F (1,23) = 6.0,
p < 0.05; data not shown). Body weight was reduced 2 h
after LPS in both genotypes (treatment: F (1,33) = 7.6,
p < 0.01; Supplementary Fig. S2A). Similarly, LPS progres-
sively decreased body weight compared to saline-treated
controls 6 h and 25 h after its injection (treatment:
F (1,23) = 36.1, p < 0.0001; treatment � time: F(1,23) = 13.0,
p < 0.01; Supplementary Fig. S2B) in both db/+ and db/db
mice (treatment � genotype: p > 0.1).

We then compared the effect of LPS on peripheral cyto-
kine production between db/+ and db/db mice. The increase
in plasma cytokine levels observed in response to peripheral
LPS administration results from the activation of both peri-
toneal and tissue pathogen-associated molecular patterns
(PAMPs)-responding cells. Therefore, this measure provides
an accurate indication of the entire systemic peripheral
cytokine response to LPS. Plasma levels of IL-1b

(F (1,20) = 13.5, p < 0.01; Fig. 3A), IL-6 (F (1,23) = 196.8,
p < 0.0001; Fig. 3B), TNF-a (F (1,20) = 16.3, p < 0.001;
Fig. 3C) and the anti-inflammatory cytokine IL-10
(F (1,23) = 79.1, p < 0.001; Fig. 3D) significantly increased in
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all LPS-treated mice 2 h after treatment, regardless their
genotype. As interferon-g (IFN-g) only increases between 6 h
and 12 h post-LPS (André et al., 2008), no significant effect of
LPS was observed for plasma INF-g levels at 2 h post-treat-
ment, these levels being low and similar in all groups (data
not shown).

A well-known consequence of LPS-induced systemic
immune stimulation is activation of the hypothalamic-pitui-
tary adrenal (HPA) axis (Castanon et al., 2003). Plasma levels
of corticosterone were therefore measured in both db/+ and
db/db mice 2 h after LPS treatment. In addition, this measure
was also particularly interesting because high levels of basal
plasma corticosterone are part of the classical features
characterizing db/db mice (Stranahan et al., 2008; Dinel
et al., 2011). In accordance with their expected phenotype,
saline-treated db/db mice displayed higher plasma levels of
corticosterone than db/+ mice (genotype: F(1,32) = 7.1,
p < 0.05; Fig. 4A). Moreover, LPS increased plasma corticos-
terone release 2 h after treatment in all treated mice
(F(1,32) = 75.5, p < 0.001), this effect being not anymore
significant at 25 h post-LPS (data not shown). In basal con-
ditions, peripheral TRP is metabolized along the kynurenine
pathway in the liver by the TDO enzyme, whose activity is
mainly regulated by circulating levels of corticosterone (Mor-
gan and Badawy, 1989). Here, db/db mice displayed 25 h
after treatment higher liver KYN/TRP ratio than db/+ mice
(genotype: F(1,23) = 6.8, p < 0.05; Fig. 4B), whatever the
A: Plasma Corticosterone 
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(Fig. 4C). Moreover, this ratio was significantly increased in
all LPS-treated mice (F (1,21) = 31.8, p < 0.0001), regardless
their genotype. Consequently, LPS induced in both genotypes
similar increase in lung KYN levels (treatment: F (1,21) = 33.9,
p < 0.001; Supplementary Table S1) and decrease in TRP
levels (treatment: F(1,21) = 13.2, p < 0.01). In summary,
LPS-treated db/db mice displayed similar peripheral levels
of KYN than their db/� counterparts but lower brain KYN
levels. Peripheral KYN unlikely played therefore a major role
in controlling brain levels of KYN in the present case,
although the possibility of a differential effect of LPS on
the KYN transport across the blood brain barrier cannot be
excluded. Whatever the case, these results strongly suggest
that both db/+ and db/db mice displayed similar peripheral
inflammatory activation in response to LPS.

3.3. Hippocampal inflammatory response to LPS
challenge is not impaired in db/db mice

We then evaluated central inflammatory response to LPS by
measuring expression of cytokines and related inflammatory
markers in the hippocampus that plays a key role in both
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Figure 5 Effect of LPS on mRNA expression levels of cytokines in the hippocampus of db/db and db/+ mice. Relative fold changes in
the levels of (A) interleukin-1 b (IL-1b), (B) tumor necrosis factor-a (TNF-a) (C) IL-6, (D) interferon-g (IFN-g) and (E) the anti-
inflammatory cytokine IL-10 mRNA expression measured by real-time RT-PCR 2 h after saline or LPS (5 mg/mouse, i.p.) administration
and calculated in relation to the averaged value for control saline group. Data represent means � SEM (n = 8/group). *p < 0.05,
**p < 0.01, ***p < 0.001, for saline vs. LPS. ##p < 0.01 for db/db vs. db/+ mice.
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brain IDO activation and behavioral changes in the FST
(Frenois et al., 2007; André et al., 2008; Fu et al., 2010).
2 h after treatment, LPS significantly increased mRNA
expression of IL-1b (F (1,32) = 94.0, p < 0.001), TNF-a
(F (1,34) = 115.1, p < 0.0001), IL-6 (F(1,32) = 52.0,
p < 0.0001), IFN-g (F (1,31) = 14.8, p < 0.001) and IL-10
(F (1,30) = 33.1, p < 0.001) in both db/+ and db/db mice
(Fig. 5A—E), although this induction was higher in db/db
mice for IL-1b (genotype: F(1,32) = 10.0, p < 0.01; treat-
ment � genotype: F(1,32) = 7.9, p < 0.01) and TNF-a (geno-
type: F (1,34) = 15.9, p < 0.001; treatment � genotype:
F(1,34) = 9.7, p < 0.01).

In addition to cytokines, we also measured the effect of
LPS on the hippocampal expression of different molecules
playing a key role in microglial activation, firstly TLR4 and
CD14 that form the LPS receptor complex. The expression of
TLR4 mRNAs was similar in all groups and unaffected by LPS
(Fig. 6A). On the contrary, LPS increased mRNA expression of
CD14 (F (1,32) = 88.9, p < 0.001; Fig. 6B) regardless the geno-
type. Additionally, mRNA expression of CD11b, a marker of
microglial activation, was smaller in db/db than db/+ mice
(genotype: F (1,33) = 4.1, p = 0.05; Fig. 6C) and was reduced by
LPS in both genotype (treatment: F(1,33) = 10.6, p < 0.01).
We also measured the hippocampal expression of the neu-
ronal chemokine CX3CL1 that negatively regulates the acti-
vation of microglia, and its microglial receptor CX3CR1. Basal
expression of CX3CL1 and CX3CR1 mRNAs was similar in both
db/+ and db/db mice (Fig. 6D and E). LPS reduced the mRNA
expression of CX3CR1 (F (1,32) = 41.6, p < 0.001) and CX3CL1
(F (1,32) = 7.4, p < 0.05) in both genotypes. The brain-derived
neurotrophic factor (BDNF) is another important hippocam-
pal molecule that contributes to mood regulation, particu-
larly under inflammatory conditions (Barrientos et al., 2004).
In basal conditions, BDNF mRNA expression was significantly
smaller in db/db than db/+ mice ( p < 0.05; Fig. 6F). More-
over, it was reduced by LPS in db/+ mice but not in db/db
mice (genotype � treatment: F (1,31) = 3.9, p = 0.05).

Taken together, these results show that LPS-induced
expression of inflammatory markers in the hippocampus
was either similar or higher in db/db mice than in db/+ mice
2 h after treatment. Blunted brain IDO activation and induc-
tion of depressive-like behavior occurring in db/db mice after
a systemic LPS challenge cannot be therefore attributed to a
globally reduced inflammatory activation within the hippo-
campus. They are however associated with an impaired
effect of LPS on hippocampal expression of BDNF.

4. Discussion

Although there are but few studies reporting some altera-
tions of sickness behavior induced by systemic LPS challenge
in db/db mice (Faggioni et al., 1997; O’Connor et al., 2005;
Lin et al., 2007), much less is known about brain IDO activa-
tion and the resulting induction of depressive-like behaviors.
The current study shows for the first time that LPS-induced
increase of brain KYN/TRP ratio and depressive-like behavior
in the FST is impaired in db/db mice. These results suggest
that MetS might alter the ability of brain IDO, the enzyme
responsible of brain TRP catabolism along the KYN pathway in
inflammatory conditions, to appropriately respond to innate
immune system activation.

Recently, we developed preclinical animal models in
which it is possible to experimentally dissociate inflamma-
tion-induced depressive-like behavior from sickness behavior
(Frenois et al., 2007; Godbout et al., 2008; Moreau et al.,
2008; O’Connor et al., 2009a, 2009b, 2009c). These models
have provided very useful tools to thoroughly study the
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Figure 6 Effect of LPS on mRNA expression levels of different targets of cytokines in the hippocampus of db/db and db/+ mice.
Relative fold changes in the levels of mRNA expression of (A) toll-like receptor-4 (TLR4), (B) cluster of differentiation 14 (CD14), (C)
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mechanisms of brain IDO activation by cytokines (André
et al., 2008; O’Connor et al., 2009a, 2009b, 2009c; Fu
et al., 2010), including in conditions of chronic low-grade
basal inflammation such as aging (Godbout et al., 2008;
Henry et al., 2009; Corona et al., 2013; Kelley et al.,
2013). Applying this experimental approach to db/db mice
allowed us to assess for the first time the induction of brain
cytokines and tryptophan catabolism by LPS in a murine
model of MetS. In agreement with the findings pointing to
the relationship between brain IDO activity and duration of
immobility in the FST (Frenois et al., 2007; Godbout et al.,
2008; Lawson et al., 2013; Moreau et al., 2008; O’Connor
et al., 2009a, 2009b, 2009c), saline-treated db/+ and db/db
mice displayed here similar levels of brain KYN/TRPratio and
similar immobility in the FST. These results are akin to our
previous findings showing that, in unstimulated conditions,
db/db mice did not differ from db/+ mice by their behavioral
reactivity in this test (Dinel et al., 2011). Surprisingly, db/db
mice showed after LPS blunted increase of brain KYN/TRP
ratio and immobility in the FST compared to their healthy
db/+ controls. Due to its predictive validity for clinical
depression (Nestler and Hyman, 2010), the FST is classically
used to screen pharmacological molecules for their poten-
tial antidepressant properties, although it models only some
core symptoms of depression rather than the entire syn-
drome. Based on these findings, it might be tempting to
conclude that db/db mice are somehow protected from LPS-
induced depressive-like behavior. Such a conclusion needs to
be supported by additional experimental data assessing
depressive-like behavior in other paradigms, in particular
those with higher face validity for clinical depression than
the FST (Nestler and Hyman, 2010). Meanwhile, the lack of
significant increase of immobility in the FST displayed by
LPS-treated db/db mice fits with blunted induction of brain
IDO activity.

It could be argued that a general alteration of LPS effi-
ciency in db/db mice accounts for the blunted increase of
brain KYN/TRP ratio or that db/+ and db/db mice received a
fixed dose of LPS (5 mg/mouse) instead of a weight-adjusted
dose. However, several data, including ours, argue against
this interpretation. First, similar sensitivity to LPS-induced
lethality has been reported in both genotypes (Faggioni
et al., 1999). Second, the fixed dose of LPS we used has
been shown to induce protracted reduction of social inter-
action in db/db mice compared to db/+ mice (Johnson et al.,
2005; O’Connor et al., 2005). Besides, this dose of LPS
induces greater increase of core body temperature in obese
ob/ob mice that lack functional leptin than in their lean
controls (Lawrence et al., 2012). Third, attempts made to
compare fixed vs. weight-based strategies of LPS treatment
in db/db mice reveal no major changes in the amplitude of
their sickness behavior (O’Connor et al., 2005). Fourth, we
reported here that the effect of LPS on peripheral release of
inflammatory cytokines (IL-1b, TNF-a, IL-6, INF-g), as well
as lung levels of KYN and TRP, were similar in both db/+ and
db/db mice. A higher LPS-induced elevation of plasma TNF-a
and IL-6 levels has been previously reported in db/db mice
(Rummel et al., 2010), but after administration of a septic
dose of LPS much higher than ours, and by using C57BL/6J
mice as controls instead of db/+ mice (as we used). This can
be important since db/+ mice have a similar genetic back-
ground (C57BL/6J � DBA/2J) and a similar perinatal envir-
onment as their littermate db/db mice, and it is well known
that innate immune system activation can differ from one
strain of mice to the others (Nikodemova and Watters, 2011;
Painsipp et al., 2011). In the present study, LPS also
increased plasma corticosterone release at a similar level
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in both genotypes, even if db/db mice displayed higher basal
levels of corticosterone than db/+ mice, as previously shown
(Stranahan et al., 2008; Dinel et al., 2011). Therefore,
impaired increase of brain KYN/TRP ratio and immobility
in the FST displayed by db/db mice is unlikely linked to a
reduced effect of LPS on corticosterone. The dissociation
between corticosterone levels and IDO activity/depressive-
like behavior is also supported by the results obtained in
unstimulated conditions, where basal levels of corticoster-
one are elevated in db/db mice, whereas basal lung KYN/
TRP ratio and immobility in the FST are similar in both db/+
and db/db mice. Corticosterone is also known to stimulate
liver TDO activity (Morgan and Badawy, 1989), which in turn
can alter brain levels of TRP and KYN (Bano et al., 2010). It
could therefore be argued that corticosterone may indir-
ectly affect brain KYN/TRP levels and consequently depres-
sive-like behavior after LPS treatment by differentially
modulating liver TDO activity between db/db and db/+
mice. However, this is unlikely the case since LPS similarly
affected in both genotypes plasma corticosterone and liver
KYN/TRP ratio reflecting TDO activity. Lastly, post-LPS brain
KYN/TRP levels may also be influenced by peripheral KYN
and TRP concentrations, which mainly depend on lung IDO
activation in conditions of immune stimulation, and/or on
their transport through the blood brain barrier. Although the
possibility that LPS treatment may differentially influence
this transport according to the genotype cannot be totally
excluded in the present case, the actual dissociation
between peripheral and brain KYN levels (respectively simi-
lar and different between both db/+ and db/db mice)
strongly supports the assumption that increased brain
KYN/TRP ratio is mainly due to local IDO activation.

Converging evidence indicates that LPS-induced brain IDO
activation depends on brain expression of cytokines, parti-
cularly IFN-g, TNF-a and/or IL-6 (André et al., 2008; O’Con-
nor et al., 2009c; Fu et al., 2010). Although LPS broadly
stimulates cytokine expression and IDO activity within the
brain (Castanon et al., 2004; André et al., 2008), the hippo-
campus appears as a key area for IDO activation and induction
of depressive-like behavior (Frenois et al., 2007; Henry et al.,
2009; Wang et al., 2009; Fu et al., 2010). Although differ-
ential hippocampal induction of cytokine expression by LPS
existed between db/+ and db/db mice in the present study, it
cannot explain the blunted brain IDO activation. Indeed, db/
db mice exhibited 2 h after LPS either similar (as for IL-6, IFN-
g and IL-10) or exacerbated (IL-1b and TNF-a) mRNA expres-
sion compared to db/+ mice. A complete time course of
hippocampal mRNA expression of cytokines in response to
LPS would help to better understand the activation of IDO in
the context of MetS. However, it is noteworthy that this time-
point (2 h post-LPS) corresponds to the peak of hippocampal
cytokine expression that precedes local increase of IDO mRNA
expression (6—12 h post-LPS) (André et al., 2008).

Measuring changes in cytokine mRNA expression provides
early indicators of the activation of the inflammatory
response. However, their translation is ultimately required
for inducing downstream neurobiological and behavioral
modulations. Although we only measured cytokine tran-
scripts, LPS-induced changes in cytokine mRNAs are likely
to be reflected in changes of protein levels (van Dam et al.,
1998) and correlations between brain mRNA expression of
cytokines and corresponding protein levels have been
reported in db/db mice after cerebral hypoxia/ischemia
(Kumari et al., 2007). In addition, IDO activation and beha-
vioral changes displayed by LPS-treated db/+ mice in the
present study confirm that brain cytokines have been induced
at the protein levels and were able to act on their targets.
This assumption is also supported by the increased CD14
mRNA expression displayed by LPS-treated mice, as well as
the reduced expression of other hippocampal targets of
cytokines including CD11b, BDNF, the chemokine CX3CL1,
and its receptor CX3CR1. These results agree with those
showing that LPS negatively regulates CX3CL1 and/or CX3CR1
in order to thwart the protective control that neuronal
CX3CL1 exerts on microglial activation by acting on CX3CR1
(Cardona et al., 2006; Wynne et al., 2010). Interestingly, LPS
reduced hippocampal BDNF mRNA expression in db/+ mice,
as previously shown in rats (Barrientos et al., 2004; Tanaka
et al., 2006; Tong et al., 2008), but not in db/db mice.
Similarly, Lawrence et al. (2012) recently reported that
LPS-induced Fos expression in several brain nuclei is either
reduced or absent in obese mice (leptin deficient ob/ob mice
or mice submitted to high-fat diet) compared to lean con-
trols.

Mounting evidence show that CX3CL1/CX3CR1 interactions
are particularly important when microglial cells become
activated by an inflammatory challenge (Cardona et al.,
2006). Of note, recent findings report a link between LPS-
induced brain IDO activation, behavioral reactivity in the FST,
and impaired ability for CX3CL1 to regulate microglia activa-
tion (Godbout et al., 2008; Corona et al., 2010; Wynne et al.,
2010; Corona et al., 2012, 2013). Indeed, impaired regulation
of microglia by CX3CL1 because of a genetic deletion of the
CX3CR1 gene is associated with prolonged and exaggerated
microglial activation, IDO induction, and depressive-like
behavior after LPS challenge (Corona et al., 2010, 2013).
Similarly, protracted IDO activation and depressive-like
behavior is also reported in aged mice that display reduced
brain CX3CL1 levels (Godbout et al., 2008; Wynne et al.,
2010). Interestingly, db/db mice displayed after LPS chal-
lenge exactly the opposite profile of response, namely
reduced brain IDO activation and blunted induction of
depressive-like behavior. This mirror image may suggest that
CX3CL1/CX3CR1 interactions are also impaired after LPS
challenge in db/db mice. However, in that case this impair-
ment would lead to sustained CX3CL1-induced inhibition of
microglial activation despite LPS-induced stimulation, asso-
ciated with reduced IDO activation and depressive-like beha-
vior. Of note, this assumption fits with the observation that
the effect of LPS on CX3CL1 mRNA expression seemed to be
slightly stronger in db/+ mice than in db/db mice, although
the difference between the two genotypes was not signifi-
cant. Any conclusion cannot be drawn until these results are
confirmed, but they already point to the necessity of deeply
investigating the interactions between microglia and neurons
in the context of MetS, particularly in conditions of immune
stimulation.

In conclusion, the present study constitutes a first impor-
tant step toward a better understanding of the mechanisms
of IDO activation by LPS in the context of MetS. The reasons
for the impact of MetS on activation of the innate immune
system are likely complex and still need to be identified. Our
study also suggests exploring more thoroughly the relation-
ship between MetS and mood. Although clinical data indicate
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high incidence of mood disorders in MetS (Dandona et al.,
2005; Capuron et al., 2008; Viscogliosi et al., 2013), our
experimental results suggest a more complex relationship
between MetS and specific mood symptoms: db/db mice
display increased anxiety-like behavior in basal conditions
(Dinel et al., 2011) but impairment of depressive-like beha-
vior in immune-stimulated conditions (present study).
Although further clinical and experimental studies are still
needed, these findings could have relevance in improving the
management and treatment of inflammation-related com-
plications in MetS.
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